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Abstract

We consider the problem of identifying differentially expressed genes under different condi-
tions using cDNA microarrays. Standard statistical methods cannot be used because typi-
cally there are thousands of genes and few replicates. Because of the many steps involved in
the experimental process, from hybridization to image analysis, cDNA microarray data often
contain outliers. For example, an outlying data value could occur because of scratches or
dust on the surface, imperfections in the glass, or imperfections in the array production. We
develop a robust Bayesian hierarchical model for testing for differential expression. Outliers
are modeled explicitly using a t-distribution. The model includes an exchangeable prior for
the variances which allow different variances for the genes but still shrink extreme empir-
ical variances. Our model can be used for testing for differentially expressed genes among
multiple samples, and can distinguish between the different possible patterns of differential
expression when there are three or more samples. Parameter estimation is carried out using a
novel version of Markov Chain Monte Carlo that is appropriate when the model puts mass on
subspaces of the full parameter space. The method is illustrated using two publicly available
gene expression data sets. We compare our method to five other commonly used techniques,
namely the one-sample t-test, the Bonferroni-adjusted t-test, Significance Analysis of Mi-
croarrays (SAM), and EBarrays in both its Lognormal-Normal and Gamma-Gamma forms.
In an experiment with HIV data, our method performed better than these alternatives, on
the basis of between-replicate agreement and disagreement.

KEY WORDS: Bayesian hierarchical model; Bonferroni adjustment; Empirical Bayes; Gene
expression; Heteroscedasticity; Markov chain Monte Carlo; Mixture distribution; Outlier;
Singular distribution; t distribution.
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1 Introduction

cDNA microarrays (Schena et al. 1995) consist of thousands of individual DNA sequences

printed on a high density array on a glass microscope slide using a robotic arrayer. A mi-

croarray works by exploiting the ability of a given labeled cDNA molecule to bind specifically

to, or hybridize to, a complemetary sequence on the array. By using an array containing

many DNA samples, scientists can measure—in a single experiment—the expression levels

of hundreds or thousands of genes within a cell by measuring the amount of labeled cDNA

bound to each site on the array. In a typical two-color microarray experiment, two messen-

ger RNA (mRNA) samples, from control and treatment situations, are compared for gene

expression. Treatment is taken in a broad sense to mean any condition different from the

control. Both mRNA samples are reverse-transcribed into cDNA, labeled using different

fluorescent dyes (red and green dyes), and then mixed and hybridized with the arrayed DNA

sequences. The hybridized arrays are then imaged to measure the red and green intensities

for each spot on the glass slide (Yang et al. 2002). The estimates of the red and green

intensities are the starting point of any statistical analysis such as testing for differential

expression, discriminant analysis, and clustering (Yeung et al. 2001). Similarly, microarrays

can be used to compare the mRNA levels of thousands of genes under several experimental

or biological conditions by using several samples. One of the main research areas is to detect

genes that are differentially expressed across the different conditions.

In recent years, there has been a considerable amount of work on the detection of dif-

ferentially expressed genes. Perhaps the first statistical treatment of differential expression

with microarrays can be found in Chen, Dougherty, and Bittner (1997). A common approach

is to test a hypothesis for each gene and then try to correct for multiple testing. Most of

the statistics used are variants of t or F statistics. This was done by Dudoit et al. (2002)

using Welsh’s t-statistic with p-values estimated by permutations. Tusher, Tibshirani, and

Chu (2001) used a modification of the t statistic where the denominator was modified by

adding a constant to improve the estimate of the standard deviation. This idea is similar to

a regularized t-test (Baldi and Long 2001), where the estimate of the standard deviation in

the t-test was regularized by adding a global estimate of the standard deviation computed

using an empirical Bayes approach.

In each of these situations, two types of error can occur: a false positive (Type I error)

or a false negative (Type II error). When many hypothesis are tested at the same time, the

chance of committing a type I error increases. One approach to overcoming this problem is
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to try to control the total number of type I errors or false positives. This can be done using

multiple testing procedures to control some measure of the overall type I error. The most two

common measures in the area of microarrays are the familywise error rate (FWER), which is

the probability of making at least one type I error, and the false discovery rate (FDR), which

is the proportion of false positives among the total number of discoveries reported. One of

the most used FWER-based adjustments is that of Bonferroni. Tusher et al. (2001) used

a permutation technique to estimate and control the FDR. Dudoit, Shaffer, and Boldrick

(2003) review multiple adjustment procedures in the context of microarrays.

Newton et al. (2001) introduced an empirical Bayes approach to detect changes in gene

expression on a single two-channel cDNA slide using a hierarchical gamma-gamma model,

and Kendziorski et al. (2003) generalized their work to multiple sample response experi-

ments. Ibrahim, Chen, and Gray (2002) and Tadesse, Ibrahim, and Mutter (2003) have in-

troduced more fully Bayesian approaches where “exact” estimation is carried out by Markov

chain Monte Carlo.

In this paper we introduce a Bayesian hierarchical model to test for differentially ex-

pressed genes in a robust way. The model is a generalization of a model used by Gottardo

et al. (2003) to estimate the true mean intensities from replicates. Robustness is achieved by

using a hierarchical-t formulation (Besag and Higdon 1999), which is more robust to outliers

than the usual Gaussian model. The model includes an exchangeable prior for the variances,

allowing each gene to have a different variance while still achieving some shrinkage. We

elaborate this model by introducing a prior that allow us to detect differentially expressed

genes in multiple sample experiments, where the number of samples can be greater than two.

The prior is written as a mixture of singular Gaussian distributions. We show how one can

use Markov Chain Monte Carlo to estimate the parameters, even though the model contains

a component that is a mixture of singular distributions. Inference is based on the posterior

probabilities of differential expression calculated from our model. We refer to our method

as BRIDGE (Bayesian Robust Inference of Differential Gene Expression).

The paper is organized as follows. Section 2 introduces the data structure and the

notation. In Section 3 we present the Bayesian hierarchical model, and in Section 4 we show

how it is used to test for differential expression. Section 4 also reviews five other commonly

used methods to test for differentially expressed genes in the two-sample case. In Section

5, we apply the methods to experimental data and compare the results. In Section 6, we

show how one can extend our model to multiple sample experiments and use it to detect

differentially expressed genes in a three sample experiment. Finally, in Section 7 we discuss
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our results and possible extensions.

2 Data

We used two data sets that are fairly typical of data in this area. In this paper, we use the

word sample to describe different experimental or biological conditions.

The HIV data: This data set, described by van’t Wout et al. (2003), consists of four

experiments using the same RNA preparation on 4 different slides. The expression levels of

7680 cellular RNA transcripts were assessed in CD4-T-cell lines at time t = 24 hour after

infection with HIV virus type 1. This dataset contains two samples, one that correspond to

the HIV infected cells and one for the non infected cells. The dataset contains 12 HIV-1 genes

used as positive controls. This dataset is the result of a balanced dye-swap experiment. Two

of the four (technical) replicates were hybridized with the green dye (Cy3) for the control

and the red dye (Cy5) for the treatment; then the dyes were reversed on the other two

replicates. The values in the Cy3 and Cy5 channels were extracted from each image using

customized software written at the University of Washington (Spot-On Image, developed

by R.E. Bumgarner and Erick Hammersmark). The image analysis provided two numbers

for each gene in each replicate: a Green spot intensity and a Red spot intensity (these are

background adjusted estimates).

After the image analysis, the data take the form

yiscr, i = 1, . . . , I; s = 1, 2; c = 1, 2; r = 1, . . . , R,

where yiscr are the estimated intensities of gene i in sample s with color c from replicate

r. Note that we use different indices for the color and the sample to allow for dye-swap

experiments.

The BRCA data: Hedenfalk et al. (2001) conducted a study to examine breast cancer

tissues from patients carrying mutations in the predisposing genes, BRCA1 or BRCA2, or

from patients not expected to carry a hereditary mutation. Hedenfalk et al. (2001) examined

22 breast cancer tumor samples: 7 tumors with BRCA1, 8 tumors with BRCA2 and 7

sporadic tumors, i.e. with neither mutation. In this data, “samples” refer to tissue sample

types and there is no color swap. A set of 3226 genes was pre-selected by Hedenfalk et al.

(2001) by filtering the raw images. The data take the form log2(yisr/ref ir), i = 1, . . . , I; s =

1, 2, 3; r = 1, . . . , Rs, where yisr is the intensity from gene i of the r-th (biological) replicate

in sample s, and ref ir is the intensity from a common reference sample. Note that here,
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Hedenfalk et al. (2001) used a reference sample because there are three samples of interest:

BRCA1, BRCA2 and sporadic. The log-ratios were normalized so that the mean across

genes in each replicate of each sample is zero.

3 Differential Expression with Two Samples

In this section we introduce the Bayesian hierarchical model used to test for differentially

expressed genes in the two-sample case. We use a Bayesian linear model (Lindley and Smith

1972) with t-distributed sampling errors to allow for outliers (Besag and Higdon 1999). We

also explicitly model the non-constant variances by using an exchangeable prior for the gene

precisions (Lewin et al. 2003). Our model includes design effects that deal with normalization

issues (Kerr, Martin, and Churchill 2000). The model is an extension of a previous model

used by Gottardo et al. (2003) to estimate the intensities from replicates. In this section we

extend the model in order to detect differentially expressed genes with two samples.

3.1 The Model

We model y∗
iscr = gκ(yiscr) ≡ log2(yiscr + κ) where κ is a positive additive constant. The

parameter κ is estimated beforehand and is treated as fixed in the estimation of the full

model, as described in Section 3.3. The model is as follows:

y∗
iscr = gκ(yiscr) = µ + αs + βc + ηr + γis + δsc +

εiscr√
wicr

, (1)

(εi1cr, εi2cr)
′|Vi ∼ N2(0,Vi),

(wicr|νr) ∼ Ga(νr/2, νr/2),

where wicr and (εi1cr, εi2cr)
′ are independent. Since the w’s are independent of the ε’s, we

have εiscr√
wicr

∼ T(νr ,0,Vi), i.e. the (bivariate) errors have a bivariate t distribution with νr

degrees of freedom and covariance matrix Vi. The advantage of writing the model this way

is that, conditionally on the wicr, the sampling errors are again normal, but with different

precisions. The interpretation is also easier, as, conditionally on the wicr, estimation becomes

a weighted least squares problem.

In (1), µ is the baseline intensity. The sample effect αs is used to remove the bias between

the two samples. The dye effect is represented by βc, and accounts for the well-known fact

that the green dye (Cy3) tends to be brighter than the red dye (Cy5). The interaction of the

sample s with the sample c is denoted by δsc, and is present because the different dyes tend
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to have different biases in different samples. The array effect of replicate r, ηr, is intended

to normalize the overall intensity of each array across replicates. This parameter is needed

because differences between replicates in overall intensity are frequent in microarray data.

Finally, γis, the effect of gene i in sample s, is the quantity of interest. We model it as a

random effect with a mixture of two singular Gaussian distributions, the first one of which

is singular with respect to the two dimensional Lebesgue measure:

(γi|λγ, p) ∼ (1 − p)N(γi1; 0, λγ12
)1[γi1=γi2] + pN(γi1; 0, λγ1

)N(γi2; 0, λγ2
)1[γi1 6=γi2], (2)

where γi = (γi1, γi2)
′ and λγ = (λγ1

, λγ2
, λγ12

). The first component corresponds to the genes

that are not differentially expressed (γi1 = γi2) whereas the second component corresponds

to the genes that are differentially expressed (γi1 6= γi2). Note that the formulation is not

standard as it is not absolutely continuous with respect to the two-dimensional Lebesgue

measure. However it defines a proper distribution with respect to a more general dominating

measure, namely the sum of a one dimensional Lebesgue measure on the line γi1 = γi2 and

the two-dimensional Lebesgue measure (Gottardo and Raftery 2004).

For a given gene, the correlation matrix, Vi, allows the measurements from the two

samples to be correlated, and also allows each gene to have its own variance. The precision

matrix (i.e. the inverse of the covariance matrix) is given by

(V−1
i |ρ, λεi1

, λεi2
) =

1

(1 − ρ2)

(

λεi1

−
√

λεi1
λεi2

ρ

−
√

λεi1
λεi2

ρ

λεi2

)

,

(λεis
|aε, bε) ∼ Ga(a2

ε/bε, aε/bε),

where ρ is the correlation between samples, λεis
is the precision of gene i in sample s,

and Ga(a2
ε/bε, aε/bε) denotes a Gamma distribution with shape parameter a2

ε/bε and scale

parameter aε/bε, so that it has mean aε and variance bε. We use an exchangeable prior for

the precisions, so that information is shared between the genes. This allows shrinkage of

very small and very large empirical within-gene between-replicate variances.

3.2 Priors

We use a vague but proper prior for the parameters λγ12
, λγ1

, λγ2
of the distributions of the

gene effects γis in (2). This is exponential with mean 200, so that λγ ∼ Ga(1, 0.005). The

fixed effects µ, αs, βc, ηr and δsc in (1) also have vague but proper priors, normal with a

large variance, namely N(0, 25).

7



For identifiability, we impose the constraints α1 = 0, β1 = 0, δ11 = δ12 = δ21 = 0, η1 = 0

and ηR = 0. We also need two constraints on the γis, such as
∑

i γis = 0 for s = 1, 2.

However, instead of including these constraints as part of the model definition, we let the

γ’s be “free” during the sampling process, and identify the parameters afterwards from the

sampled values. These constraints were used in Gottardo et al. (2003). Here, we need

to impose an additional constraint to be able to identify the non-differentially expressed

genes. If we did not impose any additional constraint, the two components of the γ would

be unidentifiable, since one could add a constant to all of the γ2’s and subtract the same

constant to α2 without changing the overall mean. To avoid this problem, we fixed the

sample effect α2 to the least squares estimate.

We also use vague but proper priors for the error precisions, specified by aε ∼ U[0,1000] and

bε ∼ U[0,1000]. The prior for the correlation between the two samples is given by ρ ∼ U[−1,1].

The prior for the mixing parameter p is uniform over [0, 1]. The prior for the degrees of

freedom νr is uniform on the set {1, 2, . . . , 10, 20, . . . , 100}.

3.3 Parameter Estimation

Realizations were generated from the posterior distribution via Markov chain Monte Carlo

(MCMC) algorithms (Gelfand and Smith 1990). All updates are rather straightforward

except for γ since the distribution is formed by two singular components. However, there

exists a common dominating σ-finite measure and so the Metropolis-Hastings algorithm can

be used (Gottardo and Raftery 2004). If the errors were taken to be independent, i.e. ρ = 0,

the full conditional of γ would be given by

(γi| . . . ) ∝ (1−p)ciN(γi1; µ
∗
i , λ

∗
i
−1)1[γi1=γi2] +pci1ci2N(γi1; µ

∗
i1, λ

∗
i1
−1)N(γi2; µ

∗
i2, λ

∗
i2
−1)1[γi1 6=γi2],

where

λ∗
i =

∑

r,s

wicrλεis
+ λγ12

, µ∗
i = λ∗

i
−1
∑

r,s

wicrλεis
riscr,

and

λ∗
is = λεis

∑

r

wicr + λγs
, µ∗

is = λ∗
is
−1
∑

r

wicrλεis
riscr.

The constants ci, ci1 and ci2 are given by

ci =

√

λγ12

λ∗
i

exp







−0.5
∑

r,s

wicrλεis
r2
iscr + 0.5λ∗

i
−1

(

∑

r,s

wicrλεis
riscr

)2






,
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and

cis =

√

λγs

λ∗
i1

exp







−0.5λεis

∑

r

wicrr
2
iscr + 0.5λ∗

is
−1

(

∑

r

wicrλεis
riscr

)2






,

where the residuals riscr are defined by riscr = yiscr −µ+αs +βc +ηr + δsc. To update γ, one

draws new pairs (γi1, γi2) from the null component of the full conditional with probability

1 − p∗ ≡ (1 − p)c/[pc1c2 + (1 − p)c] or from the other component with probability p∗. We

refer the reader to Gottardo and Raftery (2004) for more details. Then when ρ 6= 0, we used

the full conditional given above as proposal and correct the acceptance probability with a

Hastings correction factor. Since the number of replicates is usually small, this gives a high

acceptance rate, about 90% in the example presented here.

We estimated the shift κ in advance by fitting (1) with wicr ≡ 1, λεis
≡ λεs

and p = 1

via MCMC, and treating κ as a parameter with vague uniform prior κ ∼ U[0,10000]. We then

estimated κ by its posterior mean; see Gottardo et al. (2003) for more details.

4 Methods to be Compared

In this section, we describe six methods for detecting differentially expressed genes with

cDNA microarrays. These six methods will be compared in section 5. Our method (BRIDGE)

deals with normalization whereas the other methods do not. As recommended in the litera-

ture (Chu et al. 2002), SAM and the one-sample t-test will be applied to the mean zero nor-

malized log-ratios xicr − x̄.cr, where xicr = log2(yi1cr/yi2cr). Similarly, EBarrays (Kendziorski

et al. 2003) will be applied to the normalized (bivariate) measurements (yi1cr/ȳ.1cr, yi2cr/ȳ.2cr)
′.

Bayesian Robust Inference for Differential Gene Expression (BRIDGE): From model (1) we

can compute the marginal posterior probability of differential expression of gene i, namely

%i = Pr(γi1 6= γi2|y). From the MCMC output, one can estimate the posterior probabilities

of differential expression for all the genes. For each gene i, the marginal posterior probability

of differential expression, %i, corresponds to the posterior probability that γi1 6= γi2 given

the data. For a given posterior sample S of size B we estimate the posterior probabilities by

%̂i = 1
B

#{k ∈ S : γ
(k)
i1 6= γ

(k)
i2 },

where γ
(k)
i1 and γ

(k)
i2 are the values generated at the k-th MCMC iteration. We declare a gene

to be differentially expressed if its estimated posterior probability, %̂i, is greater than 0.5.

9



Raw and Bonferroni-adjusted one-sample t-tests: A classical procedure for testing null hy-

pothesis about the mean of a distribution is the t-test. Here we apply one-sample t-tests to

the zero-mean normalized log-ratios. Because of the large number of hypotheses tested we

also report the results of adjusting the p-values using the Bonferroni adjustment. The Bonfer-

roni adjustment method controls the familywise error rate (FWER), which is the probability

of yielding one or more false positives. If P is the raw p-value, then the Bonferroni-adjusted

p value is min{IP, 1}. We declare a gene to be differentially expressed if its (raw or adjusted)

p-value is less than 0.05.

Significance Analysis of Microarrays (SAM): This is a statistical technique for finding sig-

nificant genes in a set of microarray experiments, proposed by Tusher, Tibshirani, and Chu

(2001). In the one-sample case SAM is similar to a regularized t-test where the estimate

of the standard deviation is regularized with a common estimate of the standard deviation.

SAM controls an estimate of the FDR, which is the proportion of falsely identified genes

among the genes declared to be differentially expressed.

The method for one-sample testing (one class response in the SAM software) is as follows.

1. For each gene i, compute a statistic di = x̄i

si+s0

where x̄i is the sample mean of the

log-ratios of gene i, si is the sample standard deviation of the log-ratios of gene i and

s0 is a fudge factor common to all the genes.

2. Fix a rejection region based on the statistics di and estimate the number of falsely

called genes by permutations. Permutations are obtained by randomly permuting the

signs of the log-ratios.

3. The FDR is estimated by the median of the number of falsely called genes divided by

the number of genes called differentially expressed.

4. Repeat steps 3-4 for a large number of rejection regions

Based on the estimated FDR values, the user chooses a rejection region. See Chu et al.

(2002) for further details. Using SAM we select the largest rejection region with estimated

FDR less than 0.1. In the literature FDR values between 5% and 10% are commonly used

(Tusher, Tibshirani, and Chu 2001; Efron and Tibshirani 2002; Dudoit, Shaffer, and Boldrick

2003). In our experiments, the results were not too sensitive to the choice of the FDR value

and we decided to use 10%.
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Empirical Bayes (EBarrays) Lognormal-Normal and Gamma-Gamma models: Newton et al.

(2001) and Kendziorski et al. (2003) developed methods for testing for differential gene

expression using hierarchical lognormal-normal (LNN) and gamma-gamma (GG) models.

Newton et al. (2001) developed a method for detecting changes in gene expression on a

single two-channel cDNA slide using a hierarchical gamma-gamma model, and Kendziorski

et al. (2003) extended this to replicated chips. Here we report results obtained using the

hierarchical modeling framework of Kendziorski et al. (2003). For a given gene, Kendziorski

et al. (2003) assume that the data arise from a mixture distribution of the form f(yi) =

(1−p)f0(yi)+pf1(yi), where p is the expected proportion of differentially expressed genes, f0

is the joint probability density function under the null hypothesis of no expression, f1 is the

joint probability density function under the alternative hypothesis of differential expression,

and yi is the bivariate vector of measurements for gene i. Given the mean expression in each

sample (γ1 and γ2), they assume that the measurements arise independently and identically

from an observation component fobs(.|γ1, γ2) where γ1 and γ2 are the mean expression levels

in each sample. If the gene is not differentially expressed, γ ≡ γ1 = γ2 is the overall mean ex-

pression level. They assume that the γ arise from some genome wide distribution π(γ), which

represents fluctuations in mean expression levels among genes. Then the marginal densities

become f0(yi) =
∫
∏

r fobs(yir|γ)π(γ)dγ, and f1(yi) =
∫∫
∏

r fobs(yir|γ1, γ2)π(γ1, γ2)dγ1dγ2,

where the product is over replicates. They summarize the inference about differential ex-

pression by the posterior probabilities of differential expression,

Pr(zi = 1|yi) =
pf1(yi)

(1 − p)f0(yi) + pf1(yi)
,

where zi is an indicator variable equal to 1 if the gene i is differentially expressed, and to 0

otherwise.

Kendziorski et al. (2003) used two distributional forms: a gamma-gamma (GG) model

and a lognormal-normal (LNN) model. For the GG model, the observation component is a

gamma distribution with mean value γ and scale α/γ. The coefficient of variation α is taken

to be constant across genes. Then α/γ is taken to be inverse gamma with shape parameter

α0 and ν. For the lognormal-normal (LNN) model the observation component is a lognormal

distribution with mean value γ and variance σ2 taken to be the same for all the genes. The

conjugate prior for γ is normal with mean γ0 and variance τ 2
0 . For both models, the prior can

be integrated out and the EM algorithm can be used to estimate the unknown parameters.

A gene is declared to be differentially expressed if its posterior probability is greater than

0.5.
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5 Results

We fitted the model described in Section 3.1 to the HIV data. The posterior modes of the

degrees of freedom of the t-distribution, νr, ranged from 4 to 100, indicating that the sampling

errors can be heavier-tailed than the Gaussian distribution and that the proportion of outliers

varies from array to array. There is substantial between-sample correlation, estimated as

0.63, even after removing design effects and gene effects. Our model also captures the non-

constant variance with posterior means 8.3 and 16.5 for aε and bε respectively.

The proportion of differentially expressed genes is estimated to be 0.02. Figure 1 is a plot

of the posterior probabilities against the posterior means of the log-ratios computed from

our model. A relatively small number of genes seem to be differentially expressed. Most of

the log-ratios are shrunk close to zero and have very low posterior probabilities of differential

expression. Most of the BRIDGE posterior probabilities are smaller than 0.2 (Figure 1).

In contrast, the unadjusted t-test yields many p-values less than 0.05. Figure 2 shows

both the raw and the adjusted p-values. More than 700 genes have raw p-values less than

0.05 whereas only 2 have adjusted p-values less than 0.05. The adjustment is clearly too

conservative since we know for sure from external information that at least 12 genes are dif-

ferentially expressed. Table 1 summarizes the number of genes called differentially expressed

by each method. BRIDGE, SAM and EBarrays report roughly the same number of differ-

entially expressed genes, all around 100. All the methods except the t-test with adjusted

p-values correctly detect the 12 positive control genes, i.e. those known to be differentially

expressed.

In order to evaluate the performance of each method, we divided the four replicates of

the HIV24 data into two groups of two replicates. We applied each method to each group of

replicates and looked at the agreement and disagreement between the genes declared to be

differentially expressed. Table 1 contains the number of genes declared to be differentially

expressed when two replicates are used. All the methods except the Bonferroni-adjusted t-

test detect the 12 positive controls. Overall, the number of genes declared to be differentially

expressed is much smaller when two replicates are used than when four replicates are used,

for all the methods except EBarrays. This may be because EBarrays assumes a constant

variance, whereas there seems to be evidence that the actual variances do differ between

genes. When the true variance of a gene is high, the empirical mean across replicates may also

be high by chance alone, leading to the gene to be (incorrectly) declared to be differentially

expressed by EBarrays. This is more likely to happen when there are two replicates than

12
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Figure 1: Posterior probabilities from the BRIDGE method plotted against the posterior dif-
ferences between γ1 and γ2 (estimated log-ratios) for the HIV24 data. Most of the log-ratios
are shrunk close to zero and have very low posterior probabilities of differential expression.

when there are four, because the empirical means of replicates for non-differentially expressed

genes are more variable with fewer replicates.

Table 1 shows the number of agreements and disagreements between the two groups of

replicates, for each of the six methods we consider. The raw and adjusted t-tests both perform

poorly: the raw t-test records a very high level of disagreement, presumably corresponding to

a large number of false positives, and the adjusted t-test is clearly too conservative. Among

the other methods, the number of genes on which there was agreement are comparable,

but EBarrays recorded much larger numbers of genes on which there was disagreement

than BRIDGE or SAM. Comparing BRIDGE with SAM, BRIDGE recorded agreement on

more genes than SAM (21 compared to 17), with disagreement on only half as many genes

(8 compared to 16). It thus seems that for this particular dataset, using the criterion of

agreement between replicates, BRIDGE did better than the other methods at identifying

differentially expressed genes.

6 The Multiple Sample Case

Even though the model introduced in Section 3.1 is intended to test for differential expression

between two samples, it can be extended to situations where there are more than two samples,
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Figure 2: Raw and Bonferroni-adjusted p-values plotted against the t-statistics for the HIV24
data. The adjusted p-values are too conservative, with only two p-values less than 0.05.

Table 1: Number of genes declared to be differentially expressed by each method for the
HIV data using 4 and 2 replicates.

EBarrays t-test
BRIDGE SAM GG LNN Raw Adj

Replicates 1–4 102 125 83 75 748 2
Replicates 1&3 28 31 69 114 301 0
Replicates 2&4 22 19 53 79 262 0

Table 2: Agreement and disagreement on the differential expression of genes in the HIV
data when the 4 replicates are divided into two sets of two. For each method, “Agreement”
denotes the number of genes declared to be differentially expressed based on both sets of
two replicates, while “Disagreement” refers to the number of genes that were declared to
be differentially expressed based on one set of two replicates, and not to be differentially
expressed based on the other set of two replicates.

EBarrays t-test
BRIDGE SAM GG LNN Raw Adj

Agreement 21 17 22 30 12 0
Disagreement 8 16 78 135 539 0
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and differences in expression of the same gene between any two samples may be of interest.

Here the null hypothesis is not as simply defined as before, because there are many possible

patterns of differential gene expression. In order to account for all possible patterns, the

prior for the γ’s in (2) needs to be modified. Because most microarray technologies allow the

direct comparison of at most two samples, the general model (1) needs to be modified for

changes in the experimental design. In this section we show how our model can be modified

to the case where we have three samples. The generalization to more than three samples

should be straightforward. We use the Hedenfalk et al. (2001) experiment as an example.

6.1 The model

This time we model the log-ratios y∗
isr = log2(yisr/refir), where ref ir is a common reference

sample as defined in Section 2. We assume that the measurement errors for different samples

are independent. The log-ratios are normalized and mean centered, so we do not have any

design effects, and the model becomes:

y∗
isr = γis +

εisr√
wisr

, (3)

(εisr|λεis
) ∼ N(0, λ−1

εis
),

(wisr|νr) ∼ Ga(νr/2, νr/2).

We need to modify the distribution of γ, the vector of gene effects in each sample, to allow

each possible pattern of differential expression to have positive probability. We still model

it as a random effect, but this time with a mixture of five singular Gaussian distributions, of

which four are singular with respect to the three dimensional Lebesgue measure, as follows:

(γ|λγ, p) ∼ p1N(γ1; 0, λγ1
)1[γ1=γ2=γ3]

+ p2N(γ1; 0, λγ1
)N(γ2; 0, λγ23

)1[γ1 6=γ2=γ3]

+ p3N(γ2; 0, λγ2
)N(γ1; 0, λγ13

)1[γ1=γ3 6=γ2]

+ p4N(γ3; 0, λγ3
)N(γ1; 0, λγ12

)1[γ1=γ2 6=γ3]

+ p5N(γ1; 0, λγ1
)N(γ2; 0, λγ2

)N(γ3; 0, λγ3
)1[γ1 6=γ2 6=γ3],

where λγ = (λγ1
, λγ2

, λγ3
, λγ12

, λγ13
, λγ23

, λγ123
) is the vector of precisions and p is the vector of

probabilities for the five patterns, constrained to sum to one. The five components correspond

to all five possible patterns of expression. As before, the formulation is not standard since

it is not absolutely continuous with respect to the three-dimensional Lebesgue measure, but
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it does define a proper distribution with respect to a more general dominating measure

(Gottardo and Raftery 2004).

6.2 Priors

We keep the priors described in Section 3.2. All the λγ’s have exponential prior distributions

with mean 200. The mixing probabilities have a prior distribution that is uniform over

the simplex S = {p :
∑

i pi = 1}, i.e. the prior is D(1, 1, 1, 1, 1), Dirichlet with common

hyperparameters 1.

This time the parameter estimation is easier. Since there are no design effects, there

are no identifiability issues. Moreover, the log-ratios being independent, all parameters can

be updated by Gibbs sampling except aε and bε. Again the only difficulty is in the update

of γ because of the singularity between the different components. This time, due to the

independence of the errors, the full conditional is explicitly available and so Gibbs sampling

can be used as described in Section 3.3.

6.3 Results

We fitted the model given by (3) to the BRCA data. The posterior modes of the degrees of

freedom of the t-distribution, νr, ranged as low as 4, indicating that the sampling errors can

be more heavy-tailed than the Gaussian distribution. The model captures the non-constant

variance: the posterior mean of aε, the mean of the gene-specific variances, was 9.8, and

the posterior mean of bε, the variance of the gene-specific variances, was 29.0. The posterior

mixing probabilities, p1, . . . , p5, of the five patterns of differential expression, are summarized

in Table 3 by their posterior means. The mixing probabilities clearly favor the null pattern of

no differential expression, suggesting that most of the genes are not differentially expressed.

They also suggest that there is more difference between the BRCA1 and the BRCA2 tumors

than any BRCA with sporadic tumors. This confirms results from Hedenfalk et al. (2001).

In this section, we compare our method only with EBarrays because, like our method, it

can handle multiple samples by considering all possible patterns of expression. We do not

describe the methodology as it is very similar to the two-sample case described in Section

4; see Kendziorski et al. (2003) for further details. This time we used only the LNN model,

because if the intensity measurements arise from a lognormal distribution, then so should

the ratio. However this is not the case for a gamma distribution.
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For each gene, we wish to compare the five different patterns of differential expression:

P1 : γ1 = γ2 = γ3,

P2 : γ1 6= γ2 = γ3,

P3 : γ1 = γ3 6= γ2,

P4 : γ1 = γ2 6= γ3,

P5 : γ1 6= γ2 6= γ3.

For each gene and pattern, we can compute the posterior probability that the gene conforms

to that pattern. We computed the BRIDGE posterior probabilities from our model and

the posterior probabilities using EBarrays. The difference between the BRIDGE posterior

probabilities and the posterior probabilities computed using EBarrays is quite large. For

comparison purposes, we followed Kendziorski et al. (2003) in classifying a gene as conform-

ing to a pattern if the corresponding posterior probability was greater than 0.5. The number

of genes classified into each pattern is given by Table 4.

As in the two-sample problem, EBarrays tends to declare more genes to be differentially

expressed. This may be due to two main differences between the two methods. First,

EBarrays models within-gene variances as constant, while BRIDGE allows for them to vary

between genes. If within-gene variances do indeed vary between genes, then a method such

as EBarrays that assumes constant variance may be more likely to (incorrectly) declare genes

with high variances to be differentially expressed. Second, in its lognormal-normal version,

EBarrays assumes measurement errors to be normally distributed, while BRIDGE allows

their distribution to have heavier tails. If the tails are indeed heavier, for example if there

are outliers, then a method such as EBarrays that assumes normality may be more likely to

(incorrectly) declare genes with outlying measurements in some replicates to be differentially

expressed.

To illustrate the latter point, consider Figure 3, which shows the expression levels for

the three genes classified into pattern P5 by EBarrays. The posterior probabilities of being

in pattern P5 reported by EBarrays are 0.99, 0.75 and 0.96. The same three genes are not

classified into the P5 pattern by our method but into patterns P1, P2 and P2, respectively,

with BRIDGE posterior probabilities 0.59, 0.92 and 0.86. The first gene in Figure 3 seems

to contain several outliers, e.g. measurements 9 and 10. The posterior mean of the weights,

w, from our model shows that the same outliers have been downweighted. As a result, the

gene is not declared to be differentially expressed in any way by our method. Similarly,

the sporadic tumor samples of the two other genes (samples 16-22) contain several outliers

17



that are downweighted by our model. The last two tumor types (sporadic and BRCA2) no

longer seem differentially expressed and our method classifies the two genes into pattern P2.

Visual inspection suggests that the choices made by EBarrays were quite influenced by a few

outliers, which our method downweights.

Table 3: Estimates of the mixing probabilities for the five patterns of expression on the
BRCA data from model (3) and from EBarrays.

P1 P2 P3 P4 P5

BRIDGE 0.88 0.073 0.03 0.016 0.001
EBarrays (LNN) 0.79 0.067 0.11 0.019 0.00025

Table 4: Number of genes declared to conform to each pattern of differential expression. A
gene was classified into a pattern if the corresponding posterior probability of its conforming
to that pattern was greater than 0.5.

P1 P2 P3 P4 P5

BRIDGE 3048 107 41 5 0
EBarrays (LNN) 2721 147 272 36 3

We compared the genes declared to be differentially expressed by each method with two

previous studies (Hedenfalk et al. 2001; Lee et al. 2003). In the original analysis, Hedenfalk

et al. (2001) selected a list of 53 genes using F -tests. Lee et al. (2003) used a gene selection

approach to select a group of 28 genes that best discriminate between BRCA1, BRCA2 and

sporadic tumors. Table 5 summarizes the agreement of EBarrays and BRIDGE with the

two previous studies. BRIDGE found far fewer genes to be differentially expressed than did

EBarrays — 178 as against 505 — but BRIDGE nevertheless detected almost as many of the

genes identified by the previous studies as did EBarrays. We did not expect our 178 genes to

include all of the previously selected genes by Hedenfalk et al. (2001) and Lee et al. (2003)

as they used quite different methods. For example, Hedenfalk et al. (2001) used F -tests

to select the 53 genes. It is known that the F -test can be sensitive to outliers, and so it

is possible that some of the differential expression identifications of Hedenfalk et al. (2001)

may be due to outliers, as may also be the case with EBarrays.
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Figure 3: The three genes with the greatest EBarrays posterior probabilities of conforming
to pattern P5 (all three samples different) based the LNN model (top). The correspond-
ing posterior weights from our model (bottom). The first 7 samples (1-7) correspond to
BRCA1 tumors, the next 8 samples (8-15) correspond to BRCA2 tumors and the last 7 sam-
ples (16-22) correspond to sporadic tumors. Several possibly outlying samples were heavily
downweighted by our model. The two dark outliers, measurements 9-10 from gene 1, were
truncated to 5 for clarity. The actual data values are 6.64 and 7.13, respectively.

Table 5: Agreements among the genes declared to be differentially by two previous studies
and those detected by BRIDGE and EBarrays. For BRIDGE and EBarrays, a gene is called
differentially expressed if its posterior probability of conforming to the null pattern is less
than 0.5. The total number of genes selected by each method is shown in parentheses.

Hedenfalk et. al. (53) Lee et. al. (28)
EBarrays (505) 45 21
BRIDGE (178) 37 20
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7 Discussion

We have developed a Bayesian hierarchical model for testing cDNA microarray intensities in

a way that is robust to outlying measurements but still powerful even with a small number

of replicates. Our Bayesian hierarchical model is based on a model used by Gottardo et al.

(2003) to estimate microarray intensities in a robust fashion. We modified the model by

using a novel form of prior that allows us to detect differentially expressed genes in multiple

sample experiments. When there are three or more samples, the model allows us to detect

the differentially expressed genes, and also to classify them into the different patterns of

differential expression. In an experiment with HIV two-sample data, we compared our

method with five other commonly used methods, and it performed better, at least in terms

of agreement and disagreement between groups of replicates.

In order to compare our model with other methods, we identified a gene as differentially

expressed if the posterior probability of this was greater than 0.5. In practice, though, we

would not use such a cutoff, but instead would report the posterior probabilities themselves.

The posterior probabilities from our model are well calibrated and easy to interpret.

In this paper, we have compared our model with five alternatives, but there are many

other methods for detecting differentially expressed genes with gene expression data. We

chose these five because they are widely used and representative of other methods. For

example, there are several other empirial Bayes methods that we could have used. These

includes the lognormal-normal models of Lönnstedt and Speed (2002) and Gottardo et al.

(2003) and the less parametric approaches of Efron et al. (2001) and Newton et al. (2004).

More comparisons between statistical tests can be found in Cui and Churchill (2003). Among

explicit adjustments for multiple testing, we considered only the Bonferroni adjustment and

the FDR control given by SAM; these are widely used and easy to understand. But other

adjustments for multiple comparisons have been proposed recently, mainly controlling the

FWER or the FDR (Storey and Tibshirani 2001; Dudoit et al. 2002). We refer the reader to

Dudoit, Shaffer, and Boldrick (2003) for more comparisons of multiple testing procedures.

Finally, even though our model was illustrated with two color microarray data, it could

also be easily applied to two-color Agilent data or one-color Affymetrix data.

For example, one could replace the log-ratio used in model (3) by the (log) gene expression

estimates.
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